Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
J Hazard Mater ; 470: 134117, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38554519

ABSTRACT

The harmful algal blooms (HABs) can damage the ecological equilibrium of aquatic ecosystems and threaten human health. The bio-degradation of algal by algicidal bacteria is an environmentally friendly and economical approach to control HABs. This study applied an aerobic denitrification synchronization algicidal strain Streptomyces sp. LJH-12-1 (L1) to control HABs. The cell-free filtrate of the strain L1 showed a great algolytic effect on bloom-forming cyanobacterium, Microcystis aeruginosa (M. aeruginosa). The optimal algicidal property of strain L1 was indirect light-dependent algicidal with an algicidal rate of 85.0%. The functional metabolism, light-trapping, light-transfer efficiency, the content of pigments, and inhibition of photosynthesis of M. aeruginosa decreased after the addition of the supernatant of the strain L1 due to oxidative stress. Moreover, 96.05% nitrate removal rate synchronized with algicidal activity was achieved with the strain L1. The relative abundance of N cycling functional genes significantly increased during the strain L1 effect on M. aeruginosa. The algicidal efficiency of the strain L1 in the raw water was 76.70% with nitrate removal efficiency of 81.4%. Overall, this study provides a novel route to apply bacterial strain with the property of denitrification coupled with algicidal activity in treating micro-polluted water bodies.


Subject(s)
Denitrification , Harmful Algal Bloom , Microcystis , Microcystis/metabolism , Nitrogen/metabolism , Streptomyces/metabolism , Nitrates/metabolism , Photosynthesis
2.
Sci Total Environ ; 922: 171285, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38423304

ABSTRACT

The role of environmental factors on the community structure of algae has been intensively studied, but there are few analyses on the assembly mechanism of the algal community structure. Here, changes in the community structure of algae in different seasons, the effects of environmental variables on the algal community structure, and the assembly mechanism of the algal community structure in northern and southern reservoirs were investigated in this study. The study revealed that Bacillariophyta, Cyanophyta, and Chlorophyta were the predominant algal species in the reservoirs, with Bacillariophyta and Cyanophyta exhibiting seasonal outbreaks. Compared to the northern reservoirs, the algal diversity in the southern reservoirs was greater. The diversity and algal community structure could be significantly impacted by variations in water temperature and nitrogen level. According to the ecological model, the interaction among algal communities in reservoirs was primarily cooperation. The key taxa in the northern reservoirs was Aphanizomenon sp., while the outbreak in the southern reservoirs was Coelosphaerium sp. The community formation pattern of reservoirs was stochastic, with a higher degree of explanation observed in the southern reservoirs compared to the northern reservoirs. This study preliminarily explored the assembly mechanism of the algal community, providing a theoretical basis for the control of eutrophication in drinking water reservoirs.


Subject(s)
Cyanobacteria , Diatoms , Drinking Water , Drinking Water/analysis , Phytoplankton , Seasons , Eutrophication , China , Phosphorus/analysis
3.
J Ovarian Res ; 16(1): 224, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993936

ABSTRACT

BACKGROUND: The influence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on assisted reproductive technology (ART) has received increasing attention. It has been reported that the SARS-CoV-2 RiboNucleic Acid (RNA) cannot be detected in follicular fluid and granulosa cells. However, the detection rate of SARS-CoV-2 RNA in immature oocytes and blastocysts has still unknown. Moreover, the effect of SARS-CoV-2 infection on embryological outcomes in ART during the Omicron epidemic is limited. METHODS: A prospective study was performed to explore the detection rate of viral RNA in biological specimens from patients who tested positive for SARS-CoV-2 RNA and the effects of SARS-CoV-2 infection on embryological outcomes. A total of 211 patients underwent transvaginal oocyte retrieval at the Third Affiliated Hospital of Guangzhou Medical University between December 13, 2022 and December 30, 2022. Prior to transvaginal oocyte retrieval, 61 individuals tested positive for SARS-CoV-2 RNA within 24 h. Follicular fluid was preserved during oocyte retrieval. Granular cells were collected after degranulation (Intracytoplasmic sperm injection only). Immature oocytes were collected at the end of the ICSI. Unavailable blastocysts were collected on day 6 (D6). The TIANLONG SARS-CoV-2 RT-PCR-Kit was used to detect SARS-CoV-2 RNA in all samples. The COVID-19 and Non COVID-19 groups were contrasted in the following areas: fertilization rate, 2PN rate, Day 3 (D3) available embryos rate, D3 good-quality embryos rate, blastocyst formation rate, good-quality blastocyst formation rate. RESULTS: All samples were negative except for an immature oocytes sample that was positive for SARS-CoV-2 viral RNA with a detection rate of 6.67%. Whether in-vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI), the rate of fertilization, 2PN, D3 available embryos, D3 good-quality embryos, blastocyst formation, good-quality blastocyst formation was not significantly negative different between the COVID-19 and the Non COVID-19 groups. Our findings were validated by an overview of the embryological outcome from the cycles before SARS- Cov-2 infection from the same patient. CONCLUSIONS: Except for immature oocytes, none of the follicular fluid, granulosa cells, or blastocysts samples contained viral RNA. In addition, SARS-CoV-2 infection had no detrimental effects on the embryological outcomes of ART.


Subject(s)
COVID-19 , RNA, Viral , Female , Humans , Male , Pregnancy , Prospective Studies , COVID-19/epidemiology , SARS-CoV-2 , Semen , Fertilization in Vitro , Oocytes , Blastocyst , Pregnancy Rate
4.
J Environ Sci (China) ; 133: 138-151, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37451783

ABSTRACT

Urban lakes were critical in aquatic ecology environments, but how environmental factors affected the distribution and change characteristics of algal communities in urban lakes of Xi'an city was not clearly. Here, we investigated the algal community structure of six urban lakes in Xi'an and evaluated the effects of water quality parameters on algae. The results indicated that the significant differences on physicochemical parameters existed in different urban lakes. The maximum concentration of total phosphorus in urban lakes was (0.18 ± 0.01) mg/L and there was a phenomenon of phosphorus limitation. In addition, 51 genera of algae were identified and Chlorella sp. was the dominant algal species, which was affiliated with Chlorophyta. Network analysis elucidated that each lake had a unique algal community network and the positive correlation was dominant in the interaction between algae species, illustrating that mature microbial communities existed or occupied similar niches. Redundancy analysis illustrated that environmental factors explained 47.35% variance of algal species-water quality correlation collectively, indicating that water quality conditions had a significant influence on the temporal variations of algae. Structural equation model further verified that algal community structure was directly or indirectly regulated by different water quality conditions. Our study shows that temporal patterns of algal communities can reveal the dynamics and interactions of different urban ecosystem types, providing a theoretical basis for assessing eutrophication levels and for water quality management.


Subject(s)
Chlorella , Microbiota , Lakes , China , Eutrophication , Phosphorus/analysis , Environmental Monitoring/methods
5.
J Hazard Mater ; 445: 130604, 2023 03 05.
Article in English | MEDLINE | ID: mdl-37056015

ABSTRACT

Harmful cyanobacteria blooms (HCBs) occurred frequently and become a serious scientific challenge. Copper sulfate (CuSO4) is a broad-spectrum chemical algaecide to control algae blooms. Herein, the Microcystis aeruginosa was exposed to different CuSO4 (0.0, 0.2 and 0.5 mg/L) to assess the variations in algal physiological process and metabolic profiles. The results indicated that exposure to CuSO4 of 0.5 mg/L at 72 h could significantly inhibit the cell growth and photosynthetic capacity of M. aeruginosa, including chl-a content and chlorophyll fluorescence parameters. Plasma membrane damage causing cell lysis of M. aeruginosa increased the K+ release. The increase of SOD and CAT suggested that CuSO4 treatment caused oxidative stress in algal cells. Different doses of CuSO4 modified the carbon metabolic potential, algal cells had their unique metabolic mode thereby. Moreover, the research further verified that CuSO4 would also inhibit algal growth and change algal community structure in site-collected water application. Overall, laboratory results of M. aeruginosa to CuSO4 and site-collected water application of algal responses to CuSO4 might be conducive to uncovering the controlling mechanism of algae and the potential effect of carbon cycling in an ecological environment.


Subject(s)
Herbicides , Microcystis , Copper Sulfate/toxicity , Herbicides/metabolism , Water/pharmacology , Carbon/metabolism
6.
Environ Sci Technol ; 57(13): 5252-5263, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36944030

ABSTRACT

The key limiting factors in the treatment of low C/N micropolluted water bodies are deficient essential electron donors for nitrogen removal processes. An iron/activated carbon aquagel (IACA) was synthesized as a slowly released inorganic electron donor to enhance aerobic denitrification performance in low C/N micropolluted water treatment. The denitrification efficiency in IACA reactors was enhanced by more than 56.72% and the highest of 94.12% was accomplished compared with those of the control reactors. Moreover, the CODMn removal efficiency improved by more than 34.32% in IACA reactors. The Illumina MiSeq sequencing consequence explained that the denitrifying bacteria with facultative denitrification, iron oxidation, and iron reduction function were located in the dominant species niches in the IACA reactors (e.g., Pseudomonas, Leptothrix, and Comamonas). The diversity and richness of the denitrifying bacterial communities were enhanced in the IACA reactors. Network analysis indicated that aerobic denitrifying bacterial consortia in IACA reactors presented a more complicated co-occurrence structure. The IACA reactors presented the potential for long-term denitrification operation. This study affords a pathway to utilize IACA, promoting aerobic denitrification during low C/N micropolluted water body treatment.


Subject(s)
Denitrification , Nitrates , Nitrates/metabolism , Charcoal/metabolism , Bacteria/metabolism , Nitrogen/metabolism , Bioreactors/microbiology
7.
Front Bioeng Biotechnol ; 11: 1140393, 2023.
Article in English | MEDLINE | ID: mdl-36815893

ABSTRACT

Bones are important for maintaining motor function and providing support for internal organs. Bone diseases can impose a heavy burden on individuals and society. Although bone has a certain ability to repair itself, it is often difficult to repair itself alone when faced with critical-sized defects, such as severe trauma, surgery, or tumors. There is still a heavy reliance on metal implants and autologous or allogeneic bone grafts for bone defects that are difficult to self-heal. However, these grafts still have problems that are difficult to circumvent, such as metal implants that may require secondary surgical removal, lack of bone graft donors, and immune rejection. The rapid advance in tissue engineering and a better comprehension of the physiological mechanisms of bone regeneration have led to a new focus on promoting endogenous bone self-regeneration through the use of biomaterials as the medium. Although bone regeneration involves a variety of cells and signaling factors, and these complex signaling pathways and mechanisms of interaction have not been fully understood, macrophages undoubtedly play an essential role in bone regeneration. This review summarizes the design strategies that need to be considered for biomaterials to regulate macrophage function in bone regeneration. Subsequently, this review provides an overview of therapeutic strategies for biomaterials to intervene in all stages of bone regeneration by regulating macrophages.

8.
Sci Total Environ ; 864: 161011, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36549517

ABSTRACT

Scanty attention has been paid to augmenting the denitrification performance of polluted lake water by adding mix-cultured aerobic denitrifying bacterial communities (Mix-CADBCs). In this study, to solve the serious problem of nitrogen pollution in lake water bodies, aerobic denitrifying bacteria were added to lake water to enhance the nitrogen and carbon removal ability. Three Mix-CADBCs were isolated from lake water and they could remove >94 % of total nitrogen and dissolved organic carbon, respectively. The balance of nitrogen analysis shown that >70 % of the initial nitrogen was converted to gaseous nitrogen, and <11 % of the initial nitrogen was converted into microbial biomass. The batch experiments indicated that three Mix-CADBCs could perform denitrification under various conditions. According to the results of nirS-type sequencing, the Hydrogenophaga sp., Prosthecomicrobium sp., and Pseudomonas sp. were dominated genera of three Mix-CADBCs. The analysis of network indicated Pseudomonas I.Bh25.14 and Vogsella LIG4 were correlated with the removal of total nitrogen (TN) and dissolved organic carbon in the Mix-CADBCs. Compared with lake raw water, the addition of three Mix-CADBCs could promote the denitrification capacity (the removal efficiencies of TN > 78.72 %), microbial growth (optical density increased by 0.015-0.138 and the total cell count increased by 2 times), and organic degradation ability (the removal efficiency chemical oxygen demand >38 %) of lake water. In general, the findings of this study demonstrated that Mix-CADBCs could provide a new perspective for biological treatment lake water body.


Subject(s)
Denitrification , Lakes , Dissolved Organic Matter , Water , Nitrogen
9.
Bioresour Technol ; 367: 128265, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36347481

ABSTRACT

The aerobic denitrification performance of actinomycetes was investigated. Two strains of actinomycetes were isolated and identified as Streptomyces sp. LJH-12-1 and Streptomyces diastatochromogenes LJH-12-2. Strain LJH-12-1 could remove 94% of organic carbon and 91% of total nitrogen. Meanwhile, strain LJH-12-2 could reduce 96% of organic carbon and 93% of total nitrogen. Two strains of actinomycetes revealed excellent carbon source metabolism activity. Moreover, the total nitrogen removal efficiencies were 69%, and 54%, respectively for strains LJH-12-1, and LJH-12-2 during the micro-polluted landscape raw water treatment. Futhermore, strains LJH-12-1 and LJH-12-2 could utilize aromatic proteins, soluble microbial products, and humic acid to drive aerobic denitrification processes in the landscape water bodies. These results will provide a new insight into applying aerobic denitrification actinomycetes to treat micro-polluted water bodies.


Subject(s)
Actinobacteria , Streptomyces , Carbon , Denitrification , Ecosystem , Odorants , Nitrogen , Aerobiosis , Nitrification , Nitrates
10.
Sci Total Environ ; 864: 161064, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36565869

ABSTRACT

Biological denitrification was considered an efficient and environmentally friendly way to remove the nitrogen in the water body. However, biological denitrification showed poor nitrogen removal performance due to the lack of electron donors in the low C/N water. In this study, three novel aerobic denitrifying fungi (Trichoderma sp., Penicillium sp., and Fusarium sp.) were isolated and enhanced the performance of aerobic denitrification of fungi in low C/N water bodies combined with polylactic acid/polybutylene adipate-co-terephthalate (PLA/PBAT). In this work, the aerobic denitrifying fungi seed were added to denitrifying liquid medium and mixed with PLA/PBAT. The result showed that Trichoderma sp., Penicillium sp., and Fusarium sp. could reduce 89.93 %, 89.20 %, and 87.76 % nitrate. Meanwhile, the nitrate removal efficiency adding PLA/PBAT exceeded 1.40, 1.68, and 1.46 times that of none. The results of material characterization suggested that aerobic denitrifying fungi have different abilities to secrete proteases or lipases to catalyze ester bonds in PLA/PBAT and utilize it as nutrients in denitrification, especially in Penicillium brasiliensis D6. Besides, the electron transport system activity and the intracellular ATP concentration were increased significantly after adding PLA/PBAT, especially in Penicillium brasiliensis D6. Finally, the highest removal efficiency of total nitrogen in landscape water by fungi combined with PLA/PBAT was >80 %. The findings of this work provide new insight into the possibility of nitrogen removal by fungi in low C/N and the recycling of degradable resources.


Subject(s)
Nitrogen , Water Purification , Nitrates , Denitrification , Electrons , Polyesters , Water Purification/methods , Fungi , Aerobiosis
11.
Elife ; 112022 Nov 10.
Article in English | MEDLINE | ID: mdl-36355419

ABSTRACT

Alternative splicing expands the transcriptome and proteome complexity and plays essential roles in tissue development and human diseases. However, how alternative splicing regulates spermatogenesis remains largely unknown. Here, using a germ cell-specific knockout mouse model, we demonstrated that the splicing factor Srsf10 is essential for spermatogenesis and male fertility. In the absence of SRSF10, spermatogonial stem cells can be formed, but the expansion of Promyelocytic Leukemia Zinc Finger (PLZF)-positive undifferentiated progenitors was impaired, followed by the failure of spermatogonia differentiation (marked by KIT expression) and meiosis initiation. This was further evidenced by the decreased expression of progenitor cell markers in bulk RNA-seq, and much less progenitor and differentiating spermatogonia in single-cell RNA-seq data. Notably, SRSF10 directly binds thousands of genes in isolated THY+ spermatogonia, and Srsf10 depletion disturbed the alternative splicing of genes that are preferentially associated with germ cell development, cell cycle, and chromosome segregation, including Nasp, Bclaf1, Rif1, Dazl, Kit, Ret, and Sycp1. These data suggest that SRSF10 is critical for the expansion of undifferentiated progenitors by regulating alternative splicing, expanding our understanding of the mechanism underlying spermatogenesis.


Subject(s)
Alternative Splicing , Spermatogonia , Mice , Animals , Male , Humans , Spermatogenesis/genetics , Cell Differentiation/genetics , Meiosis , Mice, Knockout , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Repressor Proteins/metabolism , Cell Cycle Proteins/metabolism
12.
Sensors (Basel) ; 22(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36433316

ABSTRACT

The die-stacking structure of 3D network-on-chips (3D NoC) leads to high power density and unequal thermal conductance between different layers, which results in low reliability and performance degradation of 3D NoCs. Congestion-aware adaptive routing, which is capable of balancing the network's traffic load, can alleviate congestion and thermal problems so as to improve the performance of the network. In this study, we propose a traffic- and thermal-aware Q-routing algorithm (TTQR) based on Q-learning, a reinforcement learning method. The proposed algorithm saves the local traffic status and the global temperature information to the Q1-table and Q2-table, respectively. The values of two tables are updated by the packet header and saved in a small size, which saves the hardware overhead. Based on the ratio of the Q1-value to the Q2-value corresponding to each direction, the packet's output port is selected. As a result, packets are transferred to the chosen path to alleviate thermal problems and achieve more balanced inter-layer traffic. Through the Access Noxim simulation platform, we compare the proposed routing algorithm with the TAAR routing algorithm. According to experimental results using synthetic traffic patterns, our proposed methods outperform the TAAR routing algorithm by an average of 63.6% and 41.4% in average latency and throughput, respectively.

13.
Hum Reprod ; 37(12): 2942-2951, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36200874

ABSTRACT

STUDY QUESTION: Does inoculation with inactivated vaccines against coronavirus disease 2019 (Covid-19) before frozen-thawed embryo transfer (FET) affect live birth and neonatal outcomes? SUMMARY ANSWER: Inactivated Covid-19 vaccines did not undermine live birth and neonatal outcomes of women planning for FET. WHAT IS KNOWN ALREADY: Accumulating reports are now available indicating the safe use of mRNA vaccines against Covid-19 in pregnant and lactating women, and a few reports indicate that they are not associated with adverse effects on ovarian stimulation or early pregnancy outcomes following IVF. Evidence about the safety of inactivated Covid-19 vaccines is very limited. STUDY DESIGN, SIZE, DURATION: This is a retrospective cohort analysis from Reproductive Medical Center of a tertiary teaching hospital. Clinical records and vaccination record of 2574 couples with embryos transferred between 1 March 2021 and 30 September 2021 were screened for eligibility of this study. PARTICIPANTS/MATERIALS, SETTING, METHODS: Clinical and vaccination data of infertile couples planning for FET were screened for eligibility of the study. The reproductive and neonatal outcomes of FET women inoculated with inactivated Covid-19 vaccines or not were compared. The primary outcomes were live birth rate per embryo transfer cycle and newborns' birth height and weight. Secondary outcomes included rates of ongoing pregnancy, clinical pregnancy, biochemical pregnancy and spontaneous miscarriage. Multivariate logistical regression and propensity score matching (PSM) analyses were performed to minimize the influence of confounding factors. Subgroup analyses, including single dose versus double dose of the vaccines and the time intervals between the first vaccination and embryo transfer, were also performed. MAIN RESULTS AND THE ROLE OF CHANCE: Vaccinated women have comparable live birth rates (43.6% versus 45.0% before PSM, P = 0.590; and 42.9% versus 43.9% after PSM, P = 0.688), ongoing pregnancy rates (48.2% versus 48.1% before PSM, P = 0.980; and 52.2% versus 52.7% after PSM, P = 0.875) and clinical pregnancy rate (55.0% versus 54.8% before PSM, P = 0.928; and 54.7% versus 54.2% after PSM, P = 0.868) when compared with unvaccinated counterparts. The newborns' birth length (50.0 ± 1.6 versus 49.0 ± 2.9 cm before PSM, P = 0.116; and 49.9 ± 1.7 versus 49.3 ± 2.6 cm after PSM, P = 0.141) and birth weight (3111.2 ± 349.9 versus 3030.3 ± 588.5 g before PSM, P = 0.544; and 3053.8 ± 372.5 versus 3039.2 ± 496.8 g after PSM, P = 0.347) were all similar between the two groups. Neither single dose nor double dose of vaccines, as well as different intervals between vaccination and embryo transfer showed any significant impacts on reproductive and neonatal outcomes. LIMITATIONS, REASONS FOR CAUTION: The main findings might be limited by retrospective design. Besides, inoculations of triple dose of Covid-19 vaccines were not available by the time of data collection, thus the results cannot reflect the safe use of triple dose of inactivated Covid-19 vaccines. Finally, history of Covid-19 infection was based on patients' self-report rather than objective laboratory tests. WIDER IMPLICATIONS OF THE FINDINGS: Eligible individuals of inactivated vaccines against Covid-19 should not postpone vaccination plan because of their embryo transfer schedule, or vice versa. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the Medical Key Discipline of Guangzhou (2021-2023). All authors had nothing to disclose. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
COVID-19 , Live Birth , Pregnancy , Humans , Infant, Newborn , Female , COVID-19 Vaccines/adverse effects , Retrospective Studies , COVID-19/prevention & control , Lactation , Embryo Transfer/methods , Pregnancy Rate , Birth Rate , Vaccines, Inactivated , Fertilization in Vitro/methods
14.
Water Res ; 225: 119161, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36191525

ABSTRACT

Eutrophication and algal blooms have become global issues. The drinking water treatment process suffers from pollution by algal organic matter (AOM) through cell lysis during the algal blooms. Nevertheless, it remains unclear how AOM invasion affects water quality and microbial communities in drinking water, particularly in the stagnant settings. In this study, the addition of AOM caused the residual chlorine to rapidly degrade and below the limit of 0.05 mg/L, while the NO2--N concentration ranged from 0.11 to 3.71 mg/L. Additionally, total bacterial counts increased and subsequently decreased. The results of Biolog demonstrated that the AOM significantly improved the utilization capacity of carbon sources and changed the preference for carbon sources. Full-length 16S rRNA gene sequencing and network modeling revealed a considerable reduction in the abundance of Proteobacteria, whereas that of Bacteroidetes increased significantly under the influence of AOM. Furthermore, the species abundance distributions of the Microcystis group and Scenedesmus group was most consistent with the Mandelbrot model. According to redundancy analysis and structural equation modeling, the bacterial community structure of the control group was most positively regulated by the free residual chlorine concentrations, whereas the Microcystis group and Scenedesmus group were positively correlated with the total organic carbon (TOC) concentration. Overall, these findings provide a scientific foundation for the evolution of drinking water quality under algae bloom pollution.


Subject(s)
Drinking Water , Microcystis , Scenedesmus , Chlorine/chemistry , Drinking Water/metabolism , Hydrodynamics , RNA, Ribosomal, 16S/metabolism , Nitrogen Dioxide/metabolism , Microcystis/metabolism , Carbon/metabolism
15.
Protein Expr Purif ; 200: 106165, 2022 12.
Article in English | MEDLINE | ID: mdl-36038098

ABSTRACT

Feruloyl esterase is a subclass of α/ß hydrolase, which could release ferulic acid from biomass residues for use as an efficient additive in food or pharmaceutical industries. In the present study, a feruloyl esterase with broad substrate specificity was characterised and secreted by Bacillus subtilis WB600. After codon usage optimisation and signal peptide library screening, the secretion amount of feruloyl esterase was enhanced by up to 10.2-fold in comparison with the base strain. The site-specific amino acid substitutions that facilitate protein folding further improved the secretion by about 1.5-fold. The purified rationally designed enzyme exhibited maximal activity against methyl ferulate at pH 6.5 and 65 °C. In the solid-state fermentation, the genetically engineered B. subtilis released about 37% of the total alkali-extractable ferulic acid in maize bran. This study provides a promising candidate for ferulic acid production and demonstrates that the secretion of a heterologous enzyme from B. subtilis can be cumulatively improved by changes in protein sequence features.


Subject(s)
Bacillus subtilis , Protein Sorting Signals , Alkalies , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Carboxylic Ester Hydrolases/metabolism , Coumaric Acids/metabolism , Peptide Library , Protein Sorting Signals/genetics , Substrate Specificity
16.
Sci Total Environ ; 838(Pt 3): 156475, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35660604

ABSTRACT

Less attention has been paid on the oligotrophic water body nitrogen treatment with mix-cultured aerobic denitrifying bacteria (Mix-CADB). In this study, three Mix-CADB communities were screened from the sediments of reservoirs. The nitrate and dissolved organic carbon (DOC) removal efficiencies of Mix-CADB communities were higher than 92 % and 91 %, respectively. Biolog results suggested that Mix-CADB communities displayed excellent carbon source metabolic activity. The nirS gene sequencing indicated that Pseudomonas sp. and Pseudomonas stutzeri accounted for more proportions in the core species of three Mix-CADB communities. The network model revealed that Pseudomonas sp. and Pseudomonas stutzeri mainly drove the total nitrogen and DOC removal of Mix-CADB communities. More importantly, the immobilized Mix-CADB communities could reduce >91 % nitrate in the adjusted reservoir raw water. Overall, this study showed that the three Mix-CADB communities could be regarded as potential candidates for the nitrogen treatment in oligotrophic water body ecosystems.


Subject(s)
Pseudomonas stutzeri , Water Purification , Bacteria/metabolism , Bacteria, Aerobic , Carbon/metabolism , Denitrification , Ecosystem , Nitrates/metabolism , Nitrogen/metabolism , Pseudomonas stutzeri/genetics , Water Purification/methods
17.
Bioresour Technol ; 356: 127313, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35577220

ABSTRACT

The actinomycetes strain Streptomyces sp. XD-11-9-3 and Streptomyces sp. 5 were isolated and presented poor denitrification performance. Co-culture of actinomycetes triggers nitrogen removal capacity under aerobic conditions (reduced 96% of total nitrogen). Nitrogen balance analysis presented that 71% of initial nitrogen converted as gaseous nitrogen. Moreover, co-culture increased the concentrations of adenosine triphosphate (>2.1 folds) and electron-transmission system activity (>1.5 folds) significantly. The co-culture presented excellent carbon source metabolism activity (especially amines and carboxylic acids) compared with monoculture. The removal efficiency of total nitrogen in the micro-polluted landscape water water reached 61% in the co-culture system, and the algal survival could be inhibited significantly. However, the dominant niche of the co-culture system restrained the diversity of the indigenous nirS-type denitrifying bacterial community. This study provided a novel pathway to the research of co-culture inefficiency aerobic denitrifier and further application in the restoration of polluted water.


Subject(s)
Actinobacteria , Nitrogen , Actinomyces , Aerobiosis , Denitrification , Nitrates , Water
18.
Mol Ther ; 30(1): 175-183, 2022 01 05.
Article in English | MEDLINE | ID: mdl-33974999

ABSTRACT

A couple diagnosed as carriers for lamellar ichthyosis, an autosomal recessive rare disease, encountered two pregnancy losses. Their blood samples showed the same heterozygous c.607C>T mutation in the TGM1 gene. However, we found that about 98.4% of the sperm had mutations, suggesting possible de novo germline mutation. To explore the probability of correcting this mutation, we used two different adenine base editors (ABEs) combined with related truncated single guide RNA (sgRNA) to repair the pathogenic mutation in mutant zygotes. Our results showed that the editing efficiency was 73.8% for ABEmax-NG combined with 20-bp-length sgRNA and 78.7% for Sc-ABEmax combined with 19-bp-length sgRNA. The whole-genome sequencing (WGS) and deep sequencing analysis demonstrated precise DNA editing. This study reveals the possibility of correcting the genetic mutation in embryos with the ABE system.


Subject(s)
Adenine , Gene Editing , Transglutaminases , Gene Editing/methods , Heterozygote , Humans , Mutation , RNA, Guide, Kinetoplastida , Transglutaminases/genetics
19.
Reprod Biol Endocrinol ; 19(1): 152, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34615544

ABSTRACT

OBJECTIVE: There are two major management approach for cornual heterotopic pregnancy, transvaginal cornual embryo reduction with ultrasound guidance, or laparoscopic cornual resection. This no consensus on the optimal management for cornual heterotopic pregnancy. Here, we are trying to determine the optimal management approach for patients with viable cornual heterotopic pregnancy following embryo transfer. METHODS: This is a retrospective cohort study conducted at the locally largest reproductive center of a tertiary hospital. A total of 14 women diagnosed as viable cornual heterotopic pregnancy following embryo transfer. Six patients were treated with cornual pregnancy reduction under transvaginal ultrasound guidance without the use of feticide drug (treatment 1), and eight patients were treated with laparoscopic cornual pregnancy resection (treatment 2). RESULTS: All 14 patients of cornual heterotopic pregnancy following embryo transfer due to fallopian tubal factor, among which, 12 patients had cornual pregnancy occurred in the ipsilateral uterine horn of tubal pathological conditions. Nine (64.29%) showed a history of ectopic pregnancy. Thirteen (92.86%) patients were transferred with two embryos and only one patient had single embryo transferred. Six patients received treatment 1, and 2 (33.33%) had uterine horn rupture and massive bleeding which required emergency laparoscopic surgery for homostasis. No cornual rupture occurred among patients received treatment 2. Each treatment group had one case of spontaneous miscarriage. The remaining 5 cases in treatment 1 group and the remaining 7 cases in treatment 2 group delivered healthy live offspring. CONCLUSION: Patients with tubal factors attempting for embryo transfer, especially those aiming for multiple embryos transfer, should be informed with risk of cornual heterotopic pregnancy and the subsequent cornual rupture. Compared with cornual pregnancy reduction under transvaginal ultrasound guidance, laparoscopic cornual resection might be a favorable approach for patients with viable cornual heterotopic pregnancy.


Subject(s)
Embryo Transfer/adverse effects , Pregnancy Reduction, Multifetal , Pregnancy, Cornual/surgery , Pregnancy, Heterotopic/surgery , Abortifacient Agents/therapeutic use , Abortion, Spontaneous/etiology , Abortion, Spontaneous/therapy , Adult , China , Cohort Studies , Female , History, 21st Century , Humans , Laparoscopy/methods , Pregnancy , Pregnancy Reduction, Multifetal/methods , Pregnancy, Cornual/diagnosis , Pregnancy, Cornual/etiology , Pregnancy, Heterotopic/diagnosis , Pregnancy, Heterotopic/etiology , Retrospective Studies , Treatment Outcome , Ultrasonography, Interventional/methods
20.
Reprod Biol Endocrinol ; 19(1): 127, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34416895

ABSTRACT

BACKGROUND: Anticentromere antibody (ACA) is a member of the antinuclear antibody spectrum (ANAs) which has been speculated to be associated with subfertility. Thus, the present study aimed to investigate the induction of ACA production and its potential interference with early-stage embryos. METHODS: Recombinant centromere protein-A (CENP-A) or centromere protein-B (CENP-B) and complete Freund's adjuvant (CFA) were used to immunize mice. Serum ACA level was then evaluated by using an indirect immunofluorescence test. Immunofluorescence assay was performed to detect IgG in follicles in ovarian tissues and early-stage embryos. RESULTS: Following treatment, serum positive ACA was observed in mice treated with CENP and CFA. Furthermore, IgG were detected in follicular fluid and early-stage embryos from mice treated with CENP and CFA. CONCLUSIONS: This study preliminarily indicated that ACA induced by CENP and CFA may penetrate into the living embryos of early-stage in mice.


Subject(s)
Antibodies, Antinuclear/immunology , Blastocyst/immunology , Follicular Fluid/immunology , Immunoglobulin G/immunology , Ovarian Follicle/immunology , Animals , Centromere Protein A/immunology , Centromere Protein B/immunology , Chorionic Gonadotropin , Embryo, Mammalian/immunology , Female , Freund's Adjuvant , Gonadotropins, Equine , In Vitro Oocyte Maturation Techniques , Mice , Ovulation Induction , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...